classifier
pytorch_lattice.classifier.Classifier
A classifier for tabular data using calibrated models.
Note: currently only handles binary classification targets.
Example:
X, y = pyl.datasets.heart()
clf = pyl.Classifier(X.columns)
clf.configure("age").num_keypoints(10).monotonicity("increasing")
clf.fit(X, y)
Attributes:
Name | Type | Description |
---|---|---|
features |
A dict mapping feature names to their corresponding |
|
model_config |
The model configuration to use for fitting the classifier. |
|
self.model |
The fitted model. This will be |
Source code in pytorch_lattice/classifier.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
__init__(feature_names, model_config=None)
Initializes an instance of Classifier
.
Source code in pytorch_lattice/classifier.py
configure(feature_name)
fit(X, y, epochs=50, batch_size=64, learning_rate=0.001, shuffle=False)
Returns this classifier after fitting a model to the given data.
Note that calling this function will overwrite any existing model and train a new model from scratch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
A |
required |
y |
ndarray
|
A |
required |
epochs |
int
|
The number of epochs for which to fit the classifier. |
50
|
batch_size |
int
|
The batch size to use for fitting. |
64
|
learning_rate |
float
|
The learning rate to use for fitting the model. |
0.001
|
shuffle |
bool
|
Whether to shuffle the data before fitting. |
False
|
Source code in pytorch_lattice/classifier.py
load(filepath)
classmethod
Loads a Classifier
from the specified path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filepath |
str
|
The filepath from which to load the classifier. The filepath
should point to the filepath used in the |
required |
Returns:
Type | Description |
---|---|
Classifier
|
A |
Source code in pytorch_lattice/classifier.py
predict(X, logits=False)
Returns predictions for the given data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame
|
a |
required |
logits |
bool
|
If |
False
|
Source code in pytorch_lattice/classifier.py
save(filepath)
Saves the classifier to the specified path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filepath |
str
|
The directory where the classifier will be saved. If the directory does not exist, this function will attempt to create it. If the directory already exists, this function will overwrite any existing content with conflicting filenames. |
required |